

 GenCP Standard

 07 January 2025

GenICam

GenCP

Generic Control Protocol

Version 1.3.1

Version 1.3.1 GenCP Standard

 07 January 2025 Page 2 of 75

Content

Change History .. 7

1. Introduction .. 8

1.1. Motivation ... 8

1.2. Objective ... 8

1.3. Abstract ... 9

1.4. Acronyms .. 10

1.5. References ... 11

1.6. Requirement Terminology ... 11

2. Definitions .. 12

2.1. Device Description File ... 12

2.2. String Encoding ... 12

2.3. Byte and Bit Order .. 12

2.4. GenCP Version .. 12

2.5. CRC ... 13

2.6. Link ... 13

2.7. Channel .. 13

2.7.1. Default Channel ... 13

3. Operation .. 14

3.1. Protocol ... 14

3.1.1. Command & Acknowledge Mechanism .. 14

3.1.2. Pending Acknowledge.. 17

3.1.3. Message Channel ... 19

3.1.4. Failure .. 20

3.2. Heartbeat ... 25

3.3. GenICam File .. 26

3.3.1. Manifest Table .. 26

3.3.2. Retrieval ... 26

3.3.3. Compression... 26

4. Packet Layout ... 27

4.1. General Packet Layout .. 27

Version 1.3.1 GenCP Standard

 07 January 2025 Page 3 of 75

4.2. Prefix ... 29

4.3. Common Command Data .. 29

4.3.1. Command Packet Layout ... 30

4.3.2. Acknowledge Packet Layout ... 31

4.3.3. Command IDs .. 35

4.4. Command Specific Data .. 37

4.4.1. ReadMem Command ... 37

4.4.2. ReadMem Acknowledge .. 37

4.4.3. WriteMem Command ... 38

4.4.4. WriteMem Acknowledge ... 38

4.4.5. Pending Acknowledge.. 39

4.4.6. ReadMemStacked Command ... 39

4.4.7. ReadMemStacked Acknowledge ... 40

4.4.8. WriteMemStacked Command .. 41

4.4.9. WriteMemStacked Acknowledge ... 42

4.4.10. Event Command ... 44

4.4.11. Event Acknowledge .. 45

4.5. Postfix .. 45

5. Bootstrap Register Map ... 46

5.1. Technology Agnostic Bootstrap Register Map .. 46

5.2. String Registers ... 46

5.3. Conditional Mandatory Registers .. 46

5.4. Register Map ... 47

5.4.1. GenCP Version ... 49

5.4.2. Manufacturer Name ... 49

5.4.3. Model Name ... 50

5.4.4. Family Name .. 50

5.4.5. Device Version (Manufacturer specific) .. 51

5.4.6. Manufacturer Info .. 51

5.4.7. Serial Number .. 52

5.4.8. User Defined Name .. 52

5.4.9. Device Capability ... 53

Version 1.3.1 GenCP Standard

 07 January 2025 Page 4 of 75

5.4.10. Maximum Device Response Time (MDRT) .. 54

5.4.11. Manifest Table Address .. 56

5.4.12. SBRM Address ... 56

5.4.13. Device Configuration ... 57

5.4.14. Heartbeat Timeout .. 57

5.4.15. Message Channel ID .. 58

5.4.16. Timestamp .. 60

5.4.17. Timestamp Latch .. 61

5.4.18. Timestamp Increment ... 62

5.4.19. Access Privilege ... 63

5.4.20. Protocol Endianness ... 64

5.4.21. Implementation Endianness ... 64

5.4.22. Device Software Interface Version ... 65

5.5. Generic Tables ... 65

5.5.1. Manifest ... 65

1. Serial Port Implementations ... 69

1.1. Byteorder ... 69

1.2. Channel ID .. 69

1.3. Packet Size .. 69

1.4. Serial Parameters ... 69

1.4.1. Default port parameters .. 69

1.4.2. Changing port parameters .. 69

1.5. Serial Prefix ... 71

1.6. Serial Postfix ... 71

1.7. Packet failure ... 71

1.8. Technology Specific Bootstrap Register Map ... 72

1.8.1. Supported Baudrate .. 72

1.8.2. Current Baudrate .. 74

1.9. Heartbeat ... 75

Version 1.3.1 GenCP Standard

 07 January 2025 Page 5 of 75

List of Figures

Fig. 1 – Command Cycle ... 15
Fig. 2 – Pending Ack Cycle ... 17
Fig. 3 – Event Cycle ... 19
Fig. 4 – Command Failure ... 22
Fig. 5 – Ack Failure.. 24
Fig. 6 – General Packet Layout .. 27
Fig. 7 – Serial Parameter Change ... 70

Version 1.3.1 GenCP Standard

 07 January 2025 Page 6 of 75

List of Tables

Table 1 – Acronyms ... 10
Table 2 – Event ID ... 20
Table 3 – GenCP Event IDs ... 20
Table 4 – Common Command Data ... 30
Table 5 – Acknowledge layout ... 31
Table 6 – Status Codes ... 34
Table 7 – Command Identifier ... 36
Table 8 – ReadMem SCD-Fields ... 37
Table 9 – ReadMem Ack SCD-Fields .. 37
Table 10 – WriteMem Command SCD-Fields ... 38
Table 11 – WriteMem Ack SCD-Fields ... 38
Table 12 – Pending Ack SCD-Fields ... 39
Table 13 – ReadMemStacked SCD-Fields ... 40
Table 14 – ReadMemStacked Ack SCD-Fields ... 41
Table 15 – WriteMemStacked Command SCD-Fields .. 42
Table 16 – WriteMemStacked Ack SCD-Fields... 43
Table 17 – Event Command SCD-Fields ... 44
Table 18 – Event Acknowledge SCD-Fields .. 45
Table 19 – Technology agnostic BRM ... 48
Table 20 – Register GenCP Version ... 49
Table 21 – Register Device Capabilities .. 54
Table 22 – Register Maximum Device Response Time ... 55
Table 23 – Register Manifest Table Offset ... 56
Table 24 – Register Technology Specific Bootstrap Register Map ... 57
Table 25 – Register Device Configuration ... 57
Table 26 – Register Heartbeat Timeout .. 58
Table 27 – Register Message Channel ID .. 58
Table 28 – Register Timestamp .. 60
Table 29 – Register Timestamp Latch .. 61
Table 30 – Register Timestamp Increment .. 62
Table 31 – Register Access Privilege ... 63
Table 32 – Register - Implementation Endianness ... 64
Table 33 – Manifest Table Layout ... 66
Table 34 – Manifest Entry Layout ... 68
Table 35 – Serial Prefix .. 71
Table 36 – Serial BRM ... 72
Table 37 – Register – Serial – Supported Baudrates .. 73
Table 38 – Register – Serial – Current Baudrate.. 74

Version 1.3.1 GenCP Standard

 07 January 2025 Page 7 of 75

Change History

Version Date Description

1.0 1st Version

1.1 Oct 2014 Clarification of RequestAck bit.

Added MultipleEvents per Event Command description including capability and enable

bit.

Clarify command execution on request_id = 0

Clarify that acknowledges on corrupt command packets

Make Heartbeat for devices using GenCP over a serial link mandatory to allow baud

rate switching

1.2 Feb 2016 Renaming of Filetypes to Fileformats and adding new Filetypes for Buffer-XML.

Moving all Serial-Link based paragraphs to an appendix

Removing link to U3V

1.3 June 2018 Stacked RW access

Clarification of register Device Version

Added register Device Software Interface Version

1.3.1 Oct 2024 Fixed inconsistency between text and table regarding CRC calculations for serial prefix

in Appendix for Serial Port Implementations

Fixed problems with missing and duplicate or invisible figure descriptions

Fixed several typos and added missing commas

Changed referenced standards to reflect renaming of AIA to A3

Version 1.3.1 GenCP Standard

 07 January 2025 Page 8 of 75

1. Introduction

1.1. Motivation

Products, which rely on a serial link for communication, implement a wide variety of proprietary

control protocols. Most of these protocols are based on ASCII command strings and ASCII

responses or even binary protocols. Proprietary protocols can be integrated into GenICam through

the GenICam CLProtocol module, assuming the device manufacturer provides a dynamic link

library (DLL) for all supported platforms/operating systems. This DLL does the translation between

the camera-specific proprietary control protocol and a GenICam compliant register map, which

allows the integration of a device into GenICam.

Providing a manufacturer-specific and platform-specific DLL adds cost and effort:

• It has to be maintained for various platforms and OS versions.

• Device features must be added and updated

• The integration of embedded platforms must be taken into account

A more straightforward approach is to provide a read/write register protocol, which can also run on

a serial link and do the register map integration in the camera. There would be only one place to

change, the camera firmware, in order to introduce new features. There would be no platform-

specific software needed, which would allow the use of embedded devices as the controlling host.

This protocol can be packet based and therefore used on other packet-based technologies as well.

Some devices on the market implement serial protocols in a similar way already. The idea is to

propose a common approach for implementing a protocol to give new implementers a hint and

maybe to allow a de facto standard in the future.

The original idea was to simplify the CLProtocol implementation by providing a protocol

description. Because a protocol can potentially be used on other technologies as well, the definition

is kept more generic. It can be adjusted to other technologies however the serial link of Camera

Link was the first approach.

1.2. Objective

The objective of this document is to describe

• a packet-based protocol to read and write registers in a register-based device

• a Bootstrap Register Map (BRM) to provide basic device information

• access to the device’s GenICam file

• the technology specific communication configuration

Version 1.3.1 GenCP Standard

 07 January 2025 Page 9 of 75

For example, an ASCII based serial link protocol could be used in the generic CLProtocol module

to communicate with a manufacturer’s device over the Camera Link’s serial link. At boot up, the

generic CLProtocol module would allow the configuration of the serial link. A “generic” software

could download the GenICam file by accessing the camera’s registers. The software can then

provide native GenICam (like GigE Vision) access to the device without the need for the camera

vendor to provide a platform/operating system-specific software running on the host, implementing

the translation between GenICam register access and manufacturer proprietary protocols.

1.3. Abstract

The protocol is packet based. It follows a simple command/acknowledge scheme to provide resend

and timeout capabilities, adding minimum overhead.

The Bootstrap Register Map (BRM) resides in a 64-bit register space. The 64 Kbytes starting on

address zero contain technology agnostic information like manufacturer name, model name, etc.,

and provide a directory for technology specific settings.

In order to locate the GenICam file for a device, software would need to retrieve a list of available

GenICam files, called the manifest, from the device’s register map. The software would then pick

the best fitting GenICam file from the list and access via the device’s register map.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 10 of 75

1.4. Acronyms

Name Description

BRM Bootstrap Register Map

ABRM Technology Agnostic Bootstrap Register Map

SBRM Technology Specific Bootstrap Register Map

Device Device to be controlled, can be any entity, may not be

a camera

Host Controlling Master, can be any entity, may not be a PC

Link Connection between a device and a host.

Channel Logic communication channel between two entities. A

Channel is always unidirectional.

Datagram A single GenCP packet.

Entity Either the Device or the host

DRT Device Response Time

The time a device needs to process a command not

including the transfer time for the packet containing

the command.

PTT Packet Transfer Time

Time to transfer a message/command over a link at a

given link speed.

URL Uniform Resource Locator

CCD Common Command Data

Section within a GenCP command packet which is

common to all commands.

SCD Specific Command Data

Section within a GenCP command packet which is

specific to a given command.

Table 1 – Acronyms

Version 1.3.1 GenCP Standard

 07 January 2025 Page 11 of 75

1.5. References

Camera Link A3 Camera Link

GigE Vision A3 GigE Vision

GenICam EMVA GenICam

RFC3986 URL

RFC791 Internet Protocol

1.6. Requirement Terminology

Version 1.3 of this document does not yet define a requirement scheme even though it is planned to

apply that in future.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 12 of 75

2. Definitions

2.1. Device Description File

Device Description File means a GenICam compliant XML file describing the register space of a

device.

2.2. String Encoding

All strings are encoded in ASCII, UTF8 or UTF16 depending on the BRM setting. The endianness

of the characters in an encoded string must match the endianness of the containing register map.

Strings defined in the bootstrap register map must follow the endianness of the GenCP Protocol.

Strings in the device’s register map must follow the implementation endianness.

2.3. Byte and Bit Order

The order and size of fields within packets are not depending on the endianness used. Fields are

listed with its byte offset relative to the start of the section within a packet. All fields are byte

aligned.

The endianness of all fields in GenCP protocol packets is technology specific and it must match the

endianness of the bootstrap registers of the device.

This document does not define or use explicit bit numbers but identifies bits by its offset to the least

significant bit. This notation is endian agnostic even though the offset matches the bit numbers of

little-endian notations.

The endianness of the non-bootstrap registers is device implementation specific.

For reference, the byte order is described in Appendix B of RFC791.

Unless explicitly stated for a given technology, the endianness for GenCP-Implementations is big-

endian.

2.4. GenCP Version

The GenCP version this document describes is

 Major Version Number 1

 Minor Version Number 3

Version 1.3.1 GenCP Standard

 07 January 2025 Page 13 of 75

A change in the Major Version Number indicates a significant feature change and a potential break

in backward compatibility.

A change in the Minor Version Number indicates minor feature changes, bug fixes, text

clarifications and assures backward compatibility.

2.5. CRC

The CRC checksum used on the packets depends on the underlying technology. If the underlying

technology already provides a CRC, that service is used. If the underlying technology does not

provide a CRC, the checksum is defined in the Appendix.

2.6. Link

A link is the physical end to end connection between a device and a host used for control

communication. For example, for Camera Link Medium, despite the fact that there are two cables

carrying data, there is only one serial link for the RS232 communication.

Each link can carry multiple logical communication channels. GenCP assumes a single link

between a host and a device.

2.7. Channel

A channel is a logical communication path between two entities communicating over a link. There

may be multiple logical channels on a single link. Each channel is identified by a unique id number.

This number is used in the communication between two entities to identify the channel a packet

belongs to. This is either part of the protocol layers below the protocol described here or in the

PacketPrefix (see chapter 4.2), depending on the technology. This number is called “channel_id”. A

channel’s communication is unidirectional, meaning that on a single channel, the sender and

receiver side for commands and the sender and receiver side for acknowledges are fixed. Different

logical channels may have different directions. The protocol also defines packet layouts and the

communication scheme between a device and a host. This document assumes that for the master

control channel the host is the command sender and the device is the command receiver even

though the roles may change in real live.

2.7.1. Default Channel

The default channel (first control channel) is technology dependent. For example, on Ethernet this

would be a port number. For another technology it might be an arbitrary number.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 14 of 75

3. Operation

3.1. Protocol

3.1.1. Command & Acknowledge Mechanism

The protocol uses a command/acknowledge pattern. On each channel each entity has a defined role

of being either a “command sender and acknowledge receiver” or a “command receiver and

acknowledge sender”. It is defined in the BRM which channel acts as a command channel from the

host to the device, and which channel is used for the opposite direction from the device to the host.

The command sender sends a command and waits for the acknowledge packet. The command

receiver receives the command, acts according to the command, and sends the acknowledge packet

with the result.

The communication on the default communication channel defines the role of an entity. The sender

of a command on the default communication channel is called the host. The command receiver on

the default communication channel is called the (remote) device.

A command packet contains a number called command_id, which specifies the action to be

executed by the receiver and some additional data to be used when executing the command. The

command receiver is expected to process the command and return the result to the sender of the

command using an acknowledge packet.

There are commands which always need an acknowledge packet (for example ReadMem) and

commands where the acknowledge packet is optional (for example WriteMem). The demand for an

acknowledge packet is indicated by a bit in the command packet. In case no acknowledge packet is

requested, it is recommended for the command sender to wait the Maximum Device Response Time

before the next command is sent.

All commands on a channel are sent sequentially. After a command has been sent, the command

sender must wait for an acknowledge packet if requested or wait for a timeout and process the

failure before the next command may be sent.

Each command is sent with a sequentially incremented request id. This id allows resending a

command in case of a failure. A successful communication would follow this schema:

Version 1.3.1 GenCP Standard

 07 January 2025 Page 15 of 75

Fig. 1 – Command Cycle

One entity, such as the host, sends a command with a given request_id to the other entity, such as

the device, on a channel. The device processes the command, if requested forms an acknowledge

packet and sends that back to the command sender. Command and acknowledge must have the same

request_id. After the completion of a cycle, a different request_id must be used for the next cycle. It

is up to the implementation to pick its request_id. It is recommended that at the start of a

communication the command sender starts with a request_id = 0 and increments it by 1 with every

new command cycle. If the request_id wraps around, it is recommended to wrap to 1 in order to

prevent a second use of request_id = 0. In case the same request_id is received a second time in

consecutive commands the device should either send a pending ack (see below), if the command is

still being processed, or resend the acknowledge in case the final ack for the original command has

already been sent.

The exception to the just described “acknowledge resend” rule is request_id = 0. For request_id = 0

it is only allowed to send read commands (for example reading the GenCP Version registers) which

do not change the device state. This read command must always be executed because request_id = 0

and a new ack is to be sent. The data being sent must not come from an “old” cache. In case a

request_id = 0 is sent containing a write command the device must return a

GENCP_INVALID_PARAMETER status code. Since the host application does not necessarily

know which register changes the device’s state it is recommended to read register 0 (GenCP

Version) for that.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 16 of 75

This is to prevent that with the start of a communication an application uses request_id = 0 and

sends just 1 command. Then a second application would also start a new communication and would

again use request_id = 0. In this case it needs to be ensured that the second communication does not

get an “old” ack.

The round trip time for a command and the according acknowledge is

 Command Transfer Time + Processing Time + Acknowledge Transfer time

When calculating the timeout time for the command cycle, a host must therefore consider:

- the transfer time of the maximum packet size on a given link speed

- the Maximum Device Response Time, which is provided via a bootstrap register

- some margin for technology-dependent delays, which may occur on the link

Reading the Maximum Device Response Time (MDRT) register should not exceed 50 ms in order

to guarantee a responsive device. The maximum device response time for any other read or write

operation should not exceed 300 ms. This plus the maximum packet transfer time allows the host to

calculate a timeout value.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 17 of 75

3.1.2. Pending Acknowledge

In case the processing of a command takes longer than specified in the Maximum Device Response

Time register, the command receiver must send a pending acknowledge. This pending acknowledge

response uses the same request_id as the command, which triggered it, and provides a temporary

timeout in milliseconds to be used only with the command currently executed. The command

sender can then temporarily adjust its acknowledge timeout for the current cycle. In case the

command receiver has the heartbeat enabled it has to suspend its heartbeat mechanism so that the

device does not lose connection. In case the execution of the command takes longer than signaled

through an already sent pending acknowledge, the command receiver may issue another pending

acknowledge indicating a new, longer timeout.

Fig. 2 – Pending Ack Cycle

In case the device receives a further command packet while processing a command, it reacts as

follows:

Version 1.3.1 GenCP Standard

 07 January 2025 Page 18 of 75

- If the new command has the same request_id as the command currently processed, another

pending acknowledge packet is sent. In this case the pending acknowledge timeout from the

original command is used.

- If the new command has a different request_id the device responds with a GENCP_BUSY

status code.

The Processing Time for the inquiry of the Maximum Device Response Time register must not take

longer than 50ms.

After the cycle finishes, the host timeout resets to the previously calculated timeout using

Maximum Device Response Time and the heartbeat mechanism in the device works as configured

before.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 19 of 75

3.1.3. Message Channel

A Message Channel allows the asynchronous transfer of event commands from the device to the

host. For each Message Channel a different channel_id from the default channel must be used.

Fig. 3 – Event Cycle

The channel_id to be used by the Message Channel is set by the host in the according register in the

device’s BRM. Multiple events can be transmitted in one event command. A single Event is

identified by an event_id. An Event may be accompanied by additional event data. Subsequently

sent event commands are identified by request_ids. One entity, such as the device, sends an event

command with a given request_id to the other entity, such as the host, on a channel. The host

acknowledges the event packet by sending an EventAck command back to the device. The event

packet and the corresponding acknowledge must have the same request_id. After the completion of

a cycle, a different request_id for the next cycle must be used. The request_id follows the schema

described in section 3.1.1.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 20 of 75

3.1.3.1. Event ID

The source of an event on the Message Channel is identified by an event_id. An event_id is a 16-bit

value. The bits in this value have the following meaning:

Bit offset

(lsb << x)

Width

(bits)

Description

0 12 Event ID

12 2 Reserved
Set to 0

14 2 Namespace
0 = GenCP Event ID

1 = Technology specific Event ID

2 = Device specific Event ID
Table 2 – Event ID

3.1.3.2. GenCP Event ID Codes

Event ID (Hex) Name Description

0x0000 Error Generic Error Event

Table 3 – GenCP Event IDs

3.1.4. Failure

A failure on the Command Channel or the Message Channel is discovered through

• a corrupt CCD of a command or acknowledge packet

• a timeout waiting for an acknowledge

• an invalid (too short) packet (timeout waiting for the complete arrival)

• an incorrect packet header

3.1.4.1. Corrupt Packet

A packet is corrupt if the transmission of the packet failed (e.g. a transmission failure caused the

Version 1.3.1 GenCP Standard

 07 January 2025 Page 21 of 75

CRC of the packet to be wrong or the sender sent the wrong CRC) or if it is too short to carry a

correct CCD plus Prefix. In this case the received data is discarded and no answer is sent back to the

sender.

The receive buffer should be flushed until no data is received within a maximum packet transfer

time or longer.

• The sender must wait after a communication error until all corrupt data is removed and then

it sends its command again.

• The receiver discards all corrupt data after a communication error and waits for the sender

to resend its command.

• If the underlying technology controls packet handling, it is not necessary to wait for a packet

transfer time on failure.

• There is no acknowledge carrying a failure status code in order to prevent the link being

flooded with garbage acknowledges.

In case the received Prefix and CCD is correct, the receiver must answer as requested with an

appropriate status code and the originator can resend the command.

When there are errors on either side, the original command packet is resent from the sender as

described in chapter 3.1.4.3.

In case of failure the sender should retry 3 times to transmit the packet.

3.1.4.2. Timeout

A packet is considered “too short” if the data for a packet has not completely been received within

the Packet Transfer Time (PTT) after the first byte of the packet has arrived. The PTT is depending

on

- the link speed

- the maximum packet size allowed on the link

- the timeout for the transfer of two consecutive bytes on a link

If an error occurs on either side, the original command packet is resent from the sender as described

in chapter 3.1.4.3 .

In case of failure, the sender should retry 3 times to transmit the packet.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 22 of 75

3.1.4.3. Command Packet Failure

If the command packet is lost on the link or if the command packet is received as corrupt, the

following actions are supposed to happen:

Fig. 4 – Command Failure

The command is resent after the timeout period with the CommandResend bit being set. The

request_id is the same as with the original command.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 23 of 75

There is a corner case if the device was opened and only one single command was sent or if the

request_id got a wraparound to 0, the device was closed and a new application starts with

request_id being 0. In this case the CommandResent bit would not be set but the receiver should not

discard the command. Therefore, commands with request_id equal to 0 must always be read

commands and must always be executed.

If a received command is invalid (combination of command and flags) or is not supported/unknown

by the receiver, but at least the CCD is correct (guaranteed by the underlying technology or by

CRC) so that the content of the packet is as sent by the originator and the RequestAck bit is set in

the flags field, an acknowledge must be sent back with the following content:

- the status code is to be set to GENCP_INVALID_HEADER or

GENCP_NOT_IMPLEMENTED (see 4.3.2.1)

- the command_id is copied from the received packet and the acknowledge flag (see 4.3.3) is

set

- the length is set to 0, the SCD is discarded

- the request_id is copied from the received packet and left untouched

- CRCs (if existing) must be adjusted

and then it is sent back to the originator.

3.1.4.4. Acknowledge packet failure

If an acknowledge packet is lost on the link, if the CRC of the acknowledge packet is corrupt or if

the content is not as expected, the following actions are supposed to happen:

The resend of the command packet uses the same request_id as the original. This allows the

receiver to identify a resend in case the request_id is already processed. In this case the command

must not be processed again but the previous result should be resent.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 24 of 75

Fig. 5 – Ack Failure

In case of a corrupt acknowledge packet, the sender may issue the command resend immediately

without waiting for the timeout.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 25 of 75

3.1.4.5. Pending Acknowledge Packet Failure

There are two possible failure cases using pending acknowledge.

- A complete pending acknowledge packet is lost. In this case the sender will generate a

timeout as if the pending acknowledge would not have been sent and it will issue a resend of

the command packet with the same request_id. Following chapter 3.1.2, the receiver will

reissue a pending acknowledge packet.

- A pending acknowledge packet is received corrupt by the sender. This will trigger a resend

of the command packet.

3.2. Heartbeat

In order to maintain control in case of an unexpected abrupt detach of the controlling application, a

watchdog timer is implemented in the device. This mechanism is called Heartbeat. On start-up of

the command sender application, the Access Privilege Register in the device’s BRM must be set.

With that the Heartbeat timer in the device starts. This Heartbeat timer has to be triggered

periodically by a read/write register access from the host to the device. The timeout of the Heartbeat

can be adjusted through a register in the bootstrap register map. The presence of a Heartbeat

mechanism is indicated by a bit in the device capability register in the device’s BRM. It may be

disabled through a bit in the device configuration register in the BRM.

In case the Heartbeat counter is not triggered by a register access longer than specified in the

Heartbeat Timeout register, the device stops streaming and resets the access privilege status and

resets communication parameters. After a Heartbeat timeout, it should be possible to communicate

with a device using default communication parameters, for example the baud rate of serial devices.

It is technology dependent which parameters are affected.

The Access Privilege register can be set to

- Available – The device is available. The device does not stream data.

- Open (Exclusive) – Only the controlling application has read and write access to the device.

It is depending on the technology how this is observed. Other applications/hosts will receive

an error trying to access the device’s register map.

The exception to this rule is the Access Privilege register itself. This register can be read any

time.

When the host changes the state of the Access Privilege register from Open (Exclusive) to Available

the device must switch back to default communication parameters after the acknowledge for the

write command was sent. The behavior is the same as if the Heartbeat Timeout would run out. This

is to allow another application to establish a communication with the device.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 26 of 75

3.3. GenICam File

A GenCP device must be register based. A manufacturer must provide access to a GenICam file

describing the register map of the device.

The GenICam file must be stored within the device so that it can be retrieved by the host. The file

may be stored and delivered either in uncompressed or compressed format. In case it is compressed

it is up to the controlling host to deflate the file.

3.3.1. Manifest Table

A GenCP device may provide multiple GenICam files complying with different GenICam Schema

versions. A so called “Manifest Table” register block contains a list of entries, providing

information like file versions, complying schema versions, and register addresses. A description of

the Manifest register block can be found in the Bootstrap Register Map section of this document.

3.3.2. Retrieval

It is the responsibility of the host software to retrieve the file from the device reading the device’s

register space using the GenCP Protocol.

3.3.3. Compression

The compression methods used in case the GenICam file is stored in the device in a compressed

format are DEFLATE and STORE of the .zip file format. File extension for compressed files is zip.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 27 of 75

4. Packet Layout

The protocol defines the communication between two entities. An entity is either a device or a host.

The role of a device and host are defined by the initiator of the default communication. The host is

the initiator of the communication on the default channel (see chapter 2.7) and the device responds

to that.

4.1. General Packet Layout

The generic packet layout is divided into four parts:

Fig. 6 – General Packet Layout

• Prefix describes a technology specific section of the packet. This section covers

- Addressing

- Protocol type identification

- CRC

- channel_id etc.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 28 of 75

If compared to UDP/IP, a prefix would be omitted since everything is covered by the

underlying protocol. For a serial connection, we would not need to cover addressing because

it is not part of the technology. We need to identify a communication channel (by

channel_id) and we need a CRC and we need a preamble to identify the protocol.

• The Common Command Data section contains data which describes the command. For

example, this section contains the actual command identifier and the request_id.

• The Command Specific Data section is technology agnostic. It carries data which is specific

for a given command. For example, for a read command it would contain the address to read

from and the number of bytes to read.

• The Postfix section is technology specific. It carries for example a CRC checksum in case it

is needed for a given technology. This section is only mandatory if defined for a given

technology.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 29 of 75

4.2. Prefix

In case the underlying technology does not provide an addressing schema for multiple

communication channels or does not provide a checksum mechanism, the protocol needs to provide

such services. A packet then contains not only command specific data but also has to mimic an

addressing scheme between the device and host. Also we need to be able to support multiple

communication channels on a given Link and a checksum.

In case such services are provided by the underlying technology, the Prefix can simply be omitted.

4.3. Common Command Data

The Common Command Data section is technology agnostic.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 30 of 75

4.3.1. Command Packet Layout

 Width

(Bytes)

Offset

(Bytes)

Description

Prefix

2 0 flags

Flags to enable/disable command options or to provide additional info on

the specific command.

Bit offset

(lsb << x)

Width

(bits)

Description

0 14 Reserved, set to 0

14 1 RequestAck
If set the sender requests an acknowledge

packet from the command receiver.

15 1 CommandResend
If set the command is sent as a retry of a

previous sent that failed.

2 2 command_id

command_id as specified in the Command ID chapter 4.3.3

2 4 length

Length of the Specific Command Data depending on the command ID not

including Prefix, Postfix and CCD

2 6 request_id

Sequential number to identify a single command. This id is provided by

the command sender and incremented every time a new command is

issued.

SCD

Postfix

Table 4 – Common Command Data

Version 1.3.1 GenCP Standard

 07 January 2025 Page 31 of 75

4.3.2. Acknowledge Packet Layout

Width

(Bytes)

Offset

(Bytes)

Description

Prefix

2 0 status code

Status code, indicating the result of the operation.

See chapter 4.3.2.1 for a list of codes.

2 2 command_id

Command id as specified in the command_id chapter 4.3.3

2 4 length

Length of the Specific Command Data depending on the command in

bytes.

2 6 request_id

Sequential number used to identify a single acknowledge. This id is

provided by the command sender and incremented every time a new

command is issued.

SCD

Postfix

Table 5 – Acknowledge layout

Version 1.3.1 GenCP Standard

 07 January 2025 Page 32 of 75

4.3.2.1. Status Codes

This section lists status codes that can be returned through an acknowledge packet. Each status code

has 16 bits. The bits within the Status Code have the following meanings:

Bit offset

(lsb << x)

Width

(bits)

Description

0 12 Status Code
12 1 Reserved

Set to 0

13 2 Namespace
 0 = GenCP Status Code

 1 = Technology specific Code

 2 = Device specific Code

15 1 Severity
0 = Warning/Info

1 = Error

Warning and Info Status Codes indicate that the command was correctly executed and that the

device resumes operation. For example, if a float value needed to be rounded it would be a warning

but the rounded value has been set.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 33 of 75

Status Code

(Hex)

Name Description

0x0000 GENCP_SUCCESS Success

0x8001 GENCP_NOT_IMPLEMENTED Command not implemented in the

device. This covers for example

- Unknown/Unsupported

command_id

0x8002 GENCP_INVALID_PARAMETER At least one command parameter of

CCD or SCD is invalid or out of

range. This covers for example:

- CCD-Length field which

does not fit to the SCD-

Part

- Invalid content of the

reserved field in the SCD

- Write with request_id = 0

0x8003 GENCP_INVALID_ADDRESS Attempt to access a not existing

register address.

0x8004 GENCP_WRITE_PROTECT Attempt to write to a read only

register.

0x8005 GENCP_BAD_ALIGNMENT Attempt to access registers with an

address which is not aligned

according to the underlying

technology.

0x8006 GENCP_ACCESS_DENIED Attempt to read a non-readable or

write a non-writable register address.

0x8007 GENCP_BUSY The command receiver is currently

busy.

0x800B GENCP_MSG_TIMEOUT Timeout waiting for an acknowledge.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 34 of 75

0x800E GENCP_INVALID_HEADER The header of the received command

is invalid. This includes CCD and

SCD fields but not the command

payload. This covers for example:

- Invalid combinations of

flags in the CCD-Flags

field

- The transmitted packet

length does not fit to

expected size with the

given command and CCD-

Length incl. Prefix and

Postfix.

0x800F GENCP_WRONG_CONFIG The current receiver configuration

does not allow the execution of the

sent command.

…

0x8FFF GENCP_ERROR Generic error.

Table 6 – Status Codes

Version 1.3.1 GenCP Standard

 07 January 2025 Page 35 of 75

4.3.3. Command IDs

This chapter describes the command_ids for the command field in the Common Command Data

section of a GenCP command packet. The layout of a 16bit command_id is as follows:

Bit offset

(lsb << x)

Width

(bits)

Description

0 1 Acknowledge Flag
- Set this bit to 0 if the command_id belongs to a

command

- Set this bit to 1 if the command_id is used for an

acknowledgement
1 14 Command Value

Number identifying a single command/acknowledge

15 1 Custom Command Identifier
- Set this bit to 0 to identify a standardized command

value
- Set this bit to 1 to mark a custom command value

Command_ids can either identify a command or an acknowledge.

Command_ids identifying a command must have the LSB cleared.

Command_ids identifying an acknowledgement must have the LSB set to 1.

Custom command_ids must have the most significant bit set (Hex 8xxx) so that they do not collide

with future standard extensions.

Standardized command_ids are:

Version 1.3.1 GenCP Standard

 07 January 2025 Page 36 of 75

Command Name command_id

READMEM_CMD Hex 0800

READMEM_ACK Hex 0801

WRITEMEM_CMD Hex 0802

WRITEMEM_ACK Hex 0803

PENDING_ACK Hex 0805

READMEM_STACKED_CMD Hex 0806

READMEM_STACKED_ACK Hex 0807

WRITEMEM_STACKED_CMD Hex 0808

WRITEMEM_STACKED_ACK Hex 0809

EVENT_CMD Hex 0C00

EVENT_ACK Hex 0C01

Table 7 – Command Identifier

Version 1.3.1 GenCP Standard

 07 January 2025 Page 37 of 75

4.4. Command Specific Data

4.4.1. ReadMem Command

Start address and length of any read access is byte aligned unless the underlying technology states

different rules.

Width

(Bytes)

Offset

(Bytes)

Description

Prefix

CCD (command_id = READMEM_CMD)

8 0 register address

64 bit register address.

2 8 reserved

Reserved, set to 0

2 10 read length

Number of bytes to read.

Postfix

Table 8 – ReadMem SCD-Fields

4.4.2. ReadMem Acknowledge

 Width

(Bytes)

Offset

(Bytes)

Description

Prefix

CCD-ACK (command_id = READMEM_ACK)

x 0 Data

Data read from the remote device’s register map. If the number of bytes

read is different than specified in the relating READMEM_CMD the

status of the READMEM_ACK must indicate the reason.

Postfix

Table 9 – ReadMem Ack SCD-Fields

Version 1.3.1 GenCP Standard

 07 January 2025 Page 38 of 75

4.4.3. WriteMem Command

Any write access start address and length is byte aligned unless the underlying technology states

different rules. The number of bytes to write is deduced through the length field of the CCD header.

Width

(Bytes)

Offset

(Bytes)

Description

Prefix

CCD (command_id = WRITEMEM_CMD)

8 0 register address

64 bit register address.

x 8 data

Number of bytes to write to the remote device’s register map.

Postfix

Table 10 – WriteMem Command SCD-Fields

4.4.4. WriteMem Acknowledge

The WriteMem acknowledge states the result of a WriteMem command.

Width

(Bytes)

Offset

(Bytes)

Description

Prefix

CCD-ACK (command_id = WRITEMEM_ACK)

2 0 reserved

This reserved field is only sent if the length_written field is sent with the

acknowledge. If it is sent it is to be set to 0.

2 2 length written

Number of bytes successfully written to the remote device’s register map.

The length_written field must only be sent if the according bit in the

Device Capability register is set.

Postfix

Table 11 – WriteMem Ack SCD-Fields

The length field in CCD section of the WriteMem Ack must be set to 0 or 4 depending on the bit in

Version 1.3.1 GenCP Standard

 07 January 2025 Page 39 of 75

the Device Capability register. In case the length_written field (and the 2 reserved bytes) is sent, the

length field is to be set to 4. In case the length_written field is not sent the length field is 0.

4.4.5. Pending Acknowledge

The pending acknowledge informs the sender that the command, sent with the given request_id,

needs more time to execute than stated in the MDRT register. This allows the temporary adjustment

of the timeout mechanism on the command sender side. This “new” temporary timeout is only valid

for the command referenced by request_id. Multiple pending acknowledges can be sent

consecutively. The start time for the timeout specified is the time when the pending ack is sent,

assuming that the time needed to transfer the command is roughly known. The timeout is not

referring to the time the original command is sent.

Width

(Bytes)

Offset

(Bytes)

Description

Prefix

CCD-ACK (command_id = PENDING_ACK)

2 0 reserved

Reserved, set to 0.

2 2 temporary timeout

Temporary timeout for the command sent with the given request_id. The

timeout is specified in ms. The reference time/start time for the temporary

timeout is the time the PendingAck is sent.

Postfix

Table 12 – Pending Ack SCD-Fields

4.4.6. ReadMemStacked Command

The ReadMemStacked Command allows sending multiple read requests in one packet. The

resulting data must not exceed the maximum packet size. Start address and length of any read

access is byte aligned unless the underlying technology is not. The count of read commands within

the packet n has to be deduced by the receiver using the packet size sent by the transmitter.

Width

(Bytes)

Offset

(Bytes)

Description

Version 1.3.1 GenCP Standard

 07 January 2025 Page 40 of 75

Prefix

CCD (command_id = READMEM_STACKED_CMD)

8 0 register address 0

64 bit register address of the first data block to read.

2 8 reserved

Reserved, set to 0

2 10 read length 0 (Len0)

Number of bytes to read from address 0.

8 (1*12) register address 1

64 bit register address of the second data block.

2 8+(1*12) reserved

Reserved, set to 0

2 10+(1*12) read length 1 (Len1)

Number of bytes to read from address 1.

…

8 ((n-1)*12) register address n-1

64 bit register address of the last data block to read.

2 8+((n-1)*12) reserved

Reserved, set to 0

2 10+((n-1)*12) read length n-1 (Lenn-1)

Number of bytes to read from address n-1.

Postfix

Table 13 – ReadMemStacked SCD-Fields

4.4.7. ReadMemStacked Acknowledge

The ReadMemStacked acknowledge states the result of a ReadMemStacked command.

 Width

(Bytes)

Offset

(Bytes)

Description

Prefix

CCD-ACK (command_id = READMEM_STACKED_ACK)

Len0 0 data

Data read from the remote device’s register map.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 41 of 75

Len1 Len0 data

Data read from the remote device’s register map.

…

Lenn-1
∑ 𝐿𝑒𝑛𝑘

𝑛−2

𝑘=0

data

Data read from the remote device’s register map.

Postfix

Table 14 – ReadMemStacked Ack SCD-Fields

If the number of bytes read is different than specified in the relating

READMEM_STACKED_CMD, the status of the READMEM_STACKED_ACK must indicate the

reason. In that case subsequent read requests from the according READMEM_STACKED_CMD

are not executed by the receiver. The acknowledge only returns the data read correctly.

4.4.8. WriteMemStacked Command

The WriteMemStacked command allows sending multiple write requests in one packet. Any write

access start address and length is byte aligned unless the underlying technology states different

rules. The number of bytes to write is deduced from the length field of the CCD header. The count

of writes n within the packet has to be deduced by the receiver by parsing the packet up to the

packet size sent by the transmitter.

Width

(Bytes)

Offset

(Bytes)

Description

Prefix

CCD (command_id = WRITEMEM_STACKED_CMD)

8 0 register address 0

64 bit register address of the first data block to write

2 8 reserved

Reserved, set to 0

2 10 length data block 0 (Len0)

Length of the first data block to write in bytes

Len0 12 data

First data block

8 12+Len0 register address 1

64 bit register address of the second data block to write

Version 1.3.1 GenCP Standard

 07 January 2025 Page 42 of 75

2 20+Len0 reserved

Reserved, set to 0

2 22+Len0 length data block 1 (Len1)

Length of the second data block in bytes

Len1 24+Len0 data

Second data block

…

8
∑ 12 + 𝐿𝑒𝑛𝑘

𝑛−2

𝑘=0

register address n-1

64 bit register address of the last data block to write

2
8 + ∑ 12 + 𝐿𝑒𝑛𝑘

𝑛−2

𝑘=0

reserved

Reserved, set to 0

2
10 + ∑ 12 + 𝐿𝑒𝑛𝑘

𝑛−2

𝑘=0

length data block n-1 (Lenn-1)

Length of the last data block in bytes

Lenn-1
12 + ∑ 12 + 𝐿𝑒𝑛𝑘

𝑛−2

𝑘=0

data

Last data block

Postfix

Table 15 – WriteMemStacked Command SCD-Fields

4.4.9. WriteMemStacked Acknowledge

The WriteMemStacked acknowledge states the result of a WriteMemStacked command.

Width

(Bytes)

Offset

(Bytes)

Description

Prefix

CCD-ACK (command_id = WRITEMEM_STACKED_ACK)

2 0 Reserved

Reserved, set to 0

2 2 length 0 written (Len0)

Number of bytes successfully written to the remote device’s register

map. For WRITEMEM_STACKED_ACK it is mandatory to report the

length written (different than with the WRITEMEM_ACK).

Version 1.3.1 GenCP Standard

 07 January 2025 Page 43 of 75

2 4 reserved

Reserved, set to 0

2 6 length 1 written (Len1)

Number of bytes successfully written to the remote device’s register

map. For WRITEMEM_STACKED_ACK it is mandatory to report the

length written (different than with the WRITEMEM_ACK).

 ..

2 (n-1)*4 reserved

Reserved, set to 0

2 2+(n-1)*4 length n-1 written (Lenn-1)

Number of bytes successfully written to the remote device’s register

map. For WRITEMEM_STACKED_ACK it is mandatory to report the

length written (different than the WRITEMEM_ACK).

Postfix

Table 16 – WriteMemStacked Ack SCD-Fields

The writes are executed sequentially. In case of an error during a write command, subsequent writes

are not executed and the WRITEMEM_STACKED_ACK returns the status. The length x written

fields within the WRITEMEM_STACKED_ACK reflect the successful written bytes.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 44 of 75

4.4.10. Event Command

If the MultiEvent Supported bit is set in the Device Capability register and if the MultiEvent Enable

bit is set in the Device Configuration register, a single Event Command can carry multiple separate

events including their data. The host must parse a received Event Command to determine how many

single events are contained in a given Event Command and to access one of them. If the packet is

parsed, more events are expected until the length stated in the SCD section is exhausted. The first

event is located at address 0 in the SCD section of the command. The event n would start at

𝑂𝑓𝑓𝑠𝑒𝑡(𝐵𝑦𝑡𝑒𝑠) = ∑ 𝑒𝑣𝑒𝑛𝑡_𝑠𝑖𝑧𝑒(𝑘)
𝑛−1

𝑘=0
 within the SCD section where n is the index of the event to

access. In case a single event does not carry additional data, the event_size field is to be set to 12.

This way the upper software layers can see if an event packet carries multiple events. Even if the

MultiEvent is supported and enabled, an Event Command packet can contain only one event. In this

case, the size in the CCD section would match the event_size field in the SCD section.

If MultiEvent is not supported or if the MultiEvent Enable bit in the Device Configuration register

is not set the event_size field must be set to 0 (reserved) and the size of data is deduced from the

SCD size as stored in the CCD section of the packet.

Width

(Bytes)

Offset

(Bytes)

Description

Prefix

CCD (command_id = EVENT_CMD)

2 0 event_size

If the MultiEvent Supported bit is set in the Device Capability register

and if the MultiEvent Enable bit is set in the Device Configuration

register: Size of event data object in bytes including event_size, event_id,

timestamp and optional data.

Otherwise 0 to be backward compatible.

2 2 event_id

The event_id is a number identifying an event source. The schema of the

event_id follows the description in chapter 3.1.3.1

8 4 timestamp

64 bit timestamp value in ns as defined in the timestamp bootstrap

register.

X 12 data

Optional event specific data.

Postfix

Table 17 – Event Command SCD-Fields

Version 1.3.1 GenCP Standard

 07 January 2025 Page 45 of 75

4.4.11. Event Acknowledge

Width

(Bytes)

Offset

(Bytes)

Description

Prefix

CCD-ACK (command_id = EVENT_ACK)

Postfix

Table 18 – Event Acknowledge SCD-Fields

4.5. Postfix

The Postfix carries data like a CRC in case the underlying protocol layers do not provide such

services. The Postfix is conditional mandatory depending on the technology.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 46 of 75

5. Bootstrap Register Map

5.1. Technology Agnostic Bootstrap Register Map

The Technology Agnostic Bootstrap Register Map (ABRM) uses the first 64 Kbytes of the register

space. The table below shows the layout of the technology agnostic part of that bootstrap register

map. This part also contains pointers to various other parts like the Manifest which provides access

to the device GenICam files or the technology specific bootstrap registers.

5.2. String Registers

String registers not fully used are to be filled with 0. In case the full register is used, the terminating

0 can be omitted. The encoding of the content of a string register must match the Device Capability

register.

5.3. Conditional Mandatory Registers

Conditional Mandatory (CM) registers are registers which may or may not be implemented

depending on the Device Capability register. Access to a CM register which is indicated as being

not available will return a GENCP_INVALID_ADDRESS status code.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 47 of 75

5.4. Register Map

Width

(Bytes)

Offset

(Bytes)

Support Access Description

4 0x00000 M R GenCP Version
Complying GenCP specification Version

64 0x00004 M R Manufacturer Name
String containing the self-describing name of

the manufacturer

64 0x00044 M R Model Name
String containing the self-describing name of

the device model

64 0x00084 CM R Family Name
String containing the name of the family of this

device

64 0x000C4 M R Device Version
String containing the version of this device

64 0x00104 M R Manufacturer Info
String containing additional manufacturer

information

64 0x00144 M R Serial Number
String containing the serial number of the

device

64 0x00184 CM RW User Defined Name
String containing the user defined name of the

device

8 0x001C4 M R Device Capability
Bit field describing the device’s capabilities

4 0x001CC M R Maximum Device Response Time
Maximum response time in ms

8 0x001D0 M R Manifest Table Address
Pointer to the Manifest Table

8 0x001D8 CM R SBRM Address
Pointer to the Technology Specific Bootstrap

Register Map

8 0x001E0 M RW Device Configuration
Bit field describing the device’s configuration

Version 1.3.1 GenCP Standard

 07 January 2025 Page 48 of 75

Width

(Bytes)

Offset

(Bytes)

Support Access Description

4 0x001E8 CM RW Heartbeat Timeout
Heartbeat Timeout in ms

4 0x001EC CM RW Message Channel ID
channel_id used for the message channel

8 0x001F0 CM R Timestamp
Last latched device time in ns

4 0x001F8 CM W Timestamp Latch

8 0x001FC CM R Timestamp Increment

4 0x00204 CM RW Access Privilege

4 0x00208 Reserved (deprecated Protocol Endianness,
do not reuse)

4 0x0020C CM R Implementation Endianness
Endianness of device implementation registers

64 0x00210 CM R Device Software Interface Version
Version of the public software interface of the

device.

64944 0x00250 M no Reserved Register Space

Table 19 – Technology agnostic BRM

- Width Size of the register in bytes.

- Offset Address of the register (Offset in Bytes) in the device’s BRM

- Support M=Mandatory/R=Recommended/ CM=Conditional Mandatory (depending

on the capability bits)

- Access R=READONLY, W=WRITEONLY, RW=READWRITE

- Description Name and very short hint on the meaning

Version 1.3.1 GenCP Standard

 07 January 2025 Page 49 of 75

5.4.1. GenCP Version

Version of the GenCP specification this Bootstrap Register Map complies with.

Offset Hex 0

Length 4

Access Type R

Support M

Data Type 2 x 16bit fields

Factory Default Implementation specific

Bit offset

(lsb << x)

Width

(bits)

Description

0 16 Minor Version
Minor Version of the Standard this BRM and the protocol the device's

implementation complies to.

16 16 Major Version
Major Version of the Standard this BRM and the protocol the device's

implementation complies to.
Table 20 – Register GenCP Version

5.4.2. Manufacturer Name

 Manufacturer Name is a string containing a human readable manufacturer name.

Offset Hex 4

Length 64

Access Type R

Support M

Data Type String

Factory Default Device specific

Version 1.3.1 GenCP Standard

 07 January 2025 Page 50 of 75

5.4.3. Model Name

The register contains a string with a human readable model name.

Offset Hex 44

Length 64

Access Type R

Support M

Data Type String

Factory Default Device specific

5.4.4. Family Name

Family Name is a string containing a human readable name referring to multiple (similar) models of

a single manufacturer. The Family Name Supported bit in the Device Capability register indicates if

this register is present or not.

Offset Hex 84

Length 64

Access Type R

Support CM

Data Type String

Factory Default Device specific

Version 1.3.1 GenCP Standard

 07 January 2025 Page 51 of 75

5.4.5. Device Version (Manufacturer specific)

 A string containing a Device Version.

An application must NOT make any assumptions based on the content of this string. Its content is

purely manufacturer specific and may or may not change in case of e.g. a firmware update. See

Device Software Interface Version for a defined way to deal with changes that affect the behavior of

the device.

Offset Hex C4

Length 64

Access Type R

Support M

Data Type String

Factory Default Device specific

5.4.6. Manufacturer Info

Manufacturer Info is a string containing manufacturer specific information. If there is none, this

field should be all 0.

Offset Hex 104

Length 64

Access Type R

Support M

Data Type String

Factory Default Device specific

Version 1.3.1 GenCP Standard

 07 January 2025 Page 52 of 75

5.4.7. Serial Number

 The register contains a string representing the serial number of the device.

Offset Hex 144

Length 64

Access Type R

Support M

Data Type String

Factory Default Device specific

5.4.8. User Defined Name

 A string containing a user defined name. A write to this register must instantly persist without

explicitly being stored to non-volatile memory. The User Defined Name Supported bit in the Device

Capability register indicates if this register is present or not.

Offset Hex 184

Length 64

Access Type RW

Support CM

Data Type String

Factory Default Empty String

Version 1.3.1 GenCP Standard

 07 January 2025 Page 53 of 75

5.4.9. Device Capability

Device capability bits describe implementation specific details.

Offset Hex 1C4

Length 8

Access Type R

Support M

Data Type Bitfield

Factory Default Implementation specific

Version 1.3.1 GenCP Standard

 07 January 2025 Page 54 of 75

Bit offset

(lsb << x)

Width

(bits)

Description

0 1 User Defined Name Supported
Set if the device supports the User Defined Name register.

1 1 Access Privilege Supported
Set if Heartbeat/Access Privilege is supported.

2 1 Message Channel Supported
Set if the device supports a Message Channel.

3 1 Timestamp Supported
Set if the device supports a timestamp register.

4 4 String Encoding
String Encoding of the BRM

- 0x0 -> ASCII

- 0x1 -> UTF8

- 0x2 -> UTF16

- 0x3-0xF -> Reserved

8 1 FamilyName Supported
Set if the device supports the Family Name register.

9 1 SBRM Supported
Set if the device supports a SBRM.

10 1 Endianness Register Supported
Set if the device supports the Implementation Endianness register.

11 1 Written Length Field Supported
Set to 1 if the device sends the length_written field in the SCD section of

the WriteMemAck command.

12 1 MultiEvent Supported
Set to 1 if the device supports multiple events in a single event

command packet.

13 1 Stacked Commands Supported
Set to 1 if the device supports ReadMemStacked and WriteMemStacked

commands.

14 1 Device Software Interface Version Supported
Set to 1 if the Device Software Interface Version register is supported.

15 49 Reserved
Set to 0.

Table 21 – Register Device Capabilities

5.4.10. Maximum Device Response Time (MDRT)

Integer value containing the maximum time in milliseconds until a device reacts upon a received

Version 1.3.1 GenCP Standard

 07 January 2025 Page 55 of 75

command. This is not including the time needed to receive the command or send the acknowledge

packet but only the time needed to execute the command. In case a device needs longer to process a

command, it must send a pending ack.

The maximum time needed to transfer the message is depending on the link speed and the

maximum size of the message.

This number may have direct impact on the behavior of software layers above. It is to be kept as

short as possible.

The maximum response time must not exceed 300 ms in order to guarantee a good device’s

behavior.

Reading this register must not exceed 50 ms processing time.

Offset Hex 1CC

Length 4

Access Type R

Support M

Data Type UINT32

Factory Default Implementation Specific

Bit offset

(lsb << x)

Width

(bits)

Description

0 32 Maximum Device Response Time

Maximum time until a device sends a response upon a received

command, not including the time needed to send the response over the

link in ms.
Table 22 – Register Maximum Device Response Time

Version 1.3.1 GenCP Standard

 07 January 2025 Page 56 of 75

5.4.11. Manifest Table Address

Pointer to the Manifest table, containing the URLs for the GenICam files for this device. (See

chapter 5.5.1)

Offset Hex 1D0

Length 8

Access Type R

Support M

Data Type UINT64

Factory Default Implementation specific

Bit offset

(lsb << x)

Width

(bits)

Description

0 64 Manifest Table Address

64-bit register address of the Manifest Table
Table 23 – Register Manifest Table Offset

5.4.12. SBRM Address

The register contains a pointer to the Technology Specific Bootstrap Register Map. The SBRM

Supported bit in the Device Capability register indicates if this register is present or not.

Offset Hex 1D8

Length 8

Access Type R

Support CM

Data Type UINT64

Factory Default Implementation Specific

Version 1.3.1 GenCP Standard

 07 January 2025 Page 57 of 75

Bit offset

(lsb << x)

Width

(bits)

Description

0 64 SBRM Address

Technology Specific Bootstrap Register Map Address
Table 24 – Register Technology Specific Bootstrap Register Map

5.4.13. Device Configuration

Device Configuration bits describing implementation specific details.

Offset Hex 1E0

Length 8

Access Type RW

Support M

Data Type Bitfield

Factory Default Device specific

Bit offset

(lsb << x)

Width

(bits)

Description

0 1 Heartbeat Enable

Set to enable the Heartbeat Timer. The Access Privilege Supported bit in

the Device Capability register indicates if this bit is available or not. If it

is not available it must be set to 0.

1 1 MultiEvent Enable
Set to allow multiple events in a single event command packet. This bit
is only available if the MultiEvent Supported bit is set in the Device
Capability register. Otherwise it must be set to 0.

2 62 Reserved

Set to 0.
Table 25 – Register Device Configuration

5.4.14. Heartbeat Timeout

The register is available if the Access Privilege Supported bit in the Device Capability register is

set. If the Heartbeat expires the communication parameters of a device are reset, for example the

baud rate of a serial device. It is technology dependent which parameters are affected. After a

Heartbeat timeout, a host should be able to communicate with a device using default

Version 1.3.1 GenCP Standard

 07 January 2025 Page 58 of 75

communication parameters. The Heartbeat is triggered/reset through any register access initiated by

the host.

Offset Hex 1E8

Length 4

Access Type RW

Support CM

Data Type UINT32

Factory Default 3000

Bit offset

(lsb << x)

Width

(bits)

Description

0 32 Heartbeat Timeout
Heartbeat timeout in milliseconds.

Table 26 – Register Heartbeat Timeout

5.4.15. Message Channel ID

The register contains the channel_id to be used for the message channel. This register has to be

written by the host to inform the device which channel to use for the message channel. At start up

the register contains 0 indicating that it is not initialized by the host. A channel_id of 0 for the

Message Channel is not valid since 0 is used for the command channel.

Offset Hex 1EC

Length 4

Access Type RW

Support CM

Data Type UINT32

Factory Default 0

Bit offset

(lsb << x)

Width

(bits)

Description

0 32 Channel ID

Message Channel ID.
Table 27 – Register Message Channel ID

Version 1.3.1 GenCP Standard

 07 January 2025 Page 59 of 75

This register is present if the Message Channel Supported bit in the Device Capability register is

set. The Channel ID to be used is technology specific.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 60 of 75

5.4.16. Timestamp

A read of this register provides a timestamp of a free running, device internal clock in ns. Before

reading, the timestamp register must be latched to the device’s internal clock by writing to the

Timestamp Latch register.

Offset Hex 1F0

Length 8

Access Type R

Support CM

Data Type UINT64

Factory Default 0

Bit offset

(lsb << x)

Width

(bits)

Description

0 64 Timestamp

Device Time in ns.
Table 28 – Register Timestamp

The Timestamp Supported bit in the Device Capability register indicates if this register is present or

not.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 61 of 75

5.4.17. Timestamp Latch

A write with the Timestamp Latch bit set to 1 latches the current device time into the timestamp

register.

Offset Hex 1F8

Length 4

Access Type W

Support CM

Data Type Bitfield

Factory Default -

Bit offset

(lsb << x)

Width

(bits)

Description

0 1 Timestamp Latch

Latch the current device time into the timestamp register. The bit is self-

clearing which means that you do not need to set it to 0.

1 31 Reserved

Set to 0.
Table 29 – Register Timestamp Latch

The Timestamp Supported bit in the Device Capability register indicates if this register is present or

not. This register must be supported if the Timestamp register is supported.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 62 of 75

5.4.18. Timestamp Increment

This register indicates the ns/tick of the device internal clock. This allows the application to deduce

the accuracy of the timestamp provided by the bootstrap register. For example a value of 1000

indicates the device clock runs at 1MHz.

Offset Hex 1FC

Length 8

Access Type R

Support CM

Data Type UINT64

Factory Default Device specific

Bit offset

(lsb << x)

Width

(bits)

Description

0 64 Timestamp Increment
Timestamp increment in ns/tick.

Table 30 – Register Timestamp Increment

The Timestamp bit in the Device Capability register indicates if this register is present or not. This

register must be supported if the Timestamp register is supported.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 63 of 75

5.4.19. Access Privilege

This register reflects the current access privilege.

Offset Hex 204

Length 4

Access Type RW

Support CM

Data Type Bitfield

Factory Default 0

Bit offset

(lsb << x)

Width

(bits)

Description

0 3 Access Privilege

Current Access Privilege as described in 3.2

0 = Available

1 = Open (Exclusive)

2-7 = reserved

3 29 Reserved

Set to 0.
Table 31 – Register Access Privilege

This register is available if the Access Privilege Supported bit in the Device Capability register is

set. In case the Access Privilege register is available and the Heartbeat Enable bit is set in the

Device Configuration register, the Access Privilege is reset to 0 after the Heartbeat expired.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 64 of 75

5.4.20. Protocol Endianness

This register has been deprecated. Its content should be ignored (neither read nor written)

Offset Hex 208

Length 4

Access Type

Support

Data Type

Factory Default Deprecated

5.4.21. Implementation Endianness

This register reflects the endianness of the device implementation. By reading the register the host

can detect the endianness of the device specific registers.

Offset Hex 20C

Length 4

Access Type R

Support CM

Data Type UINT32

Factory Default Device specific

Bit offset

(lsb << x)

Width

(bits)

Description

0 32 Implementation Endianness

Endianness of the device implementation.

0 = big-endian

0xFFFFFFFF = little-endian
Table 32 – Register - Implementation Endianness

This register is available if the Endianness Register Supported bit in the Device Capability register

is set.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 65 of 75

5.4.22. Device Software Interface Version

The Device Software Interface Version references a certain version of the publicly available

software interface of the device. The content of the register should change to a new value (not used

before) whenever any of this changes:

- implemented communication protocol

- publicly available register map (all registers referenced by the XML and the bootstrap)

- user accessible camera functionality

- the GenApi XML.

The semantics of the string are vendor specific. The standard only requires that the string changes if

any of the above listed components change.

If this register is supported the according bit in the Device Capability register needs to be set to 1.

The Device Software Interface Version may or may not indicate some device internal changes but

that is not the primary objective.

Offset Hex 210

Length 64

Access Type R

Support CM

(intended to make M in the

next major release of the

this standard)

Data Type String

Factory Default Device specific

It is intended to make the Device Software Interface Version register mandatory in the next major

release of this standard.

5.5. Generic Tables

5.5.1. Manifest

The manifest provides a way to store multiple GenICam-related files in the device. These GenICam

files may be available in different versions, in various formats or comply to different versions of the

GenICam schema. The manifest table contains a list of Manifest Entries.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 66 of 75

5.5.1.1. Manifest Table

Width

(Bytes)

Offset

(Bytes)

Support Access Description

8 0 M R MT Entry Count
Number of entries in the Manifest Table

64 8 M R Manifest Entry 0
First entry in the Manifest Table

64 8 + 64 O R Manifest Entry 1
Second entry in the Manifest Table

...

64 8 + n*64 O R Manifest Entry n
(N+1)th entry in the Manifest Table

Table 33 – Manifest Table Layout

Version 1.3.1 GenCP Standard

 07 January 2025 Page 67 of 75

5.5.1.2. Manifest Entry

Each Manifest Entry describes the properties of a single file.

Width

(Bytes)

Offset

(Bytes)

Description

4 0 GenICam File Version

Bit offset

(lsb << x)

Width

(bits)

Description

0 16 File-Subminor Version
Subminor version of the GenICam file

referenced in this entry.

16 8 File-Minor Version
Minor version of the GenICam file referenced

in this entry.

24 8 File-Major Version
Major version of the GenICam file referenced

in this entry.

4 4 Schema / Filetype / Fileformat

Bit offset

(lsb << x)

Width

(bits)

Description

0 3 File Type
File type of the file this manifest entry points

to.

0 = Device XML

This is the “normal” GenICam device xml

containing all device features. This is the one

file provided in GenCP until version 1.1.

1 = Buffer XML

This optional XML-file contains only the

chunkdata related nodes. This allows the

consumer to instantiate one nodemap per

buffer in case the buffers containing chunk

data and so work on multiple buffers in

parallel.

2-7 = reserved

Version 1.3.1 GenCP Standard

 07 January 2025 Page 68 of 75

3 7 Reserved
Set to 0.

10 6 File Format
File format of the file this entry points to.

0 = Uncompressed GenICam XML file

1 = ZIP containing a single GenICam XML

file

2-63 = reserved

16 8 Schema-Minor Version
Minor Version of the GenICam Schema the

GenICam file complies with.

24 8 Schema-Major Version
Major Version of the GenICam Schema the

GenICam file complies with.

8 8 Register Address

Register Address at which the file can be read from.

8 16 File Size

Size of the file this manifest entry points to in bytes.

20 24 SHA1-Hash

SHA1 Hash of the file or 0 in case the hash is not available.

20 44 Reserved

Set to 0.

Table 34 – Manifest Entry Layout

Version 1.3.1 GenCP Standard

 07 January 2025 Page 69 of 75

Appendix

1. Serial Port Implementations

This section specializes the generic protocol for the use over a serial link.

1.1. Byteorder

For devices communicating over a serial link, the byte order of bootstrap registers and protocol

fields is big-endian.

1.2. Channel ID

The default channel_id for the control channel on a serial link is channel_id = 0.

1.3. Packet Size

In order to maintain reasonable response times even with low link speeds, the packets must not

exceed 1024 Bytes per packet.

1.4. Serial Parameters

1.4.1. Default port parameters

The link uses 8Bit, No Parity, 1 Stop Bit encoding and 9600 Baud per default. The Link can be

switched to other communication parameters and/or higher baud rates after a communication has

been established using the transport layer specific bootstrap registers.

1.4.2. Changing port parameters

When switching to other communication parameters the procedure is as follows:

Version 1.3.1 GenCP Standard

 07 January 2025 Page 70 of 75

Fig. 7 – Serial Parameter Change

The confirmation command rewrites the register which was written in the change step.

In case the device does not receive the confirming write command with the new parameters within

250 ms after sending the acknowledge, it falls back to the original parameter set.

In case the write confirm fails, the host must wait for 500 ms and then retry using the original

parameter set.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 71 of 75

1.5. Serial Prefix

For a serial connection, we do not have to handle addressing between device and host, because it is

a point to point connection, but we do need to mimic multiple communication channels. In addition

a packet preamble allows to identify a GenCP packet and differentiate it from other (ASCII based)

protocols.

For the default communication channel the channel_id is always 0.

Width

(Bytes)

Offset

(Bytes)

Description

2 0 0x0100 (preamble)

Leading binary 0x1 (SOH) 0x00 (NULL) send on the link to identify a

GenCP package to allow the application layers above to distinguish

between different protocols.

2 2 CCD-CRC-16

CRC-16 build from the channel_id and CCD

2 4 SCD-CRC-16

CRC-16 build from channel_id, CCD and SCD

2 6 channel_id

A 16bit number identifying a communication channel. Channel 0 is

reserved the for the default communication channel.

Table 35 – Serial Prefix

This prefix layout is identical for command and acknowledge packets. The checksums are the 16-bit

one’s complements of the one’s complement sums. The computation algorithm is the same as for

the UDP checksum referenced in RFC 768.

1.6. Serial Postfix

We do not need a Postfix section for serial links.

1.7. Packet failure

In case the device or the host receives a command packet with an invalid CCD-CRC, the receiver

Version 1.3.1 GenCP Standard

 07 January 2025 Page 72 of 75

can not be sure that the Acknowledge-Request bit is set in the command. Therefore, the received

command has to be discarded. The sender will run into a timeout and the normal resend procedure

has to be applied.

For other errors like unsupported command_ids the failure procedure as described in the GenCP

document is to be applied.

1.8. Technology Specific Bootstrap Register Map

Width

(Bytes)

Offset

(Bytes)

Support Access Description

4 0 M R Supported Baudrates

4 4 M (R)W Current Baudrate

Table 36 – Serial BRM

1.8.1. Supported Baudrate

Bitfield indicating the supported baud rates.

Offset Hex 000

Length 4

Access Type R

Support M

Data Type Bitfield

Factory Default Device specific

Version 1.3.1 GenCP Standard

 07 January 2025 Page 73 of 75

Bit offset

(lsb << x)

Width

(bits)

Description

0 32 Supported Baudrate

 BAUDRATE_9600 = 0x00000001

 BAUDRATE_19200 = 0x00000002

 BAUDRATE_38400 = 0x00000004

 BAUDRATE_57600 = 0x00000008

 BAUDRATE_115200 = 0x00000010

 BAUDRATE_230400 = 0x00000020

 BAUDRATE_460800 = 0x00000040

 BAUDRATE_921600 = 0x00000080

Multiple bits may be set according to the capability of the device.
Table 37 – Register – Serial – Supported Baudrates

Version 1.3.1 GenCP Standard

 07 January 2025 Page 74 of 75

On a serial link, a baud rate of 9600 must be supported and set at start up so that an initial

communication can be established.

1.8.2. Current Baudrate

Register indicating the currently used baud rate. The register is RW with the exception that only one

baud rate is supported. In this case the register may also be read only.

Offset Hex 004

Length 4

Access Type RW

Support M

Data Type Bitfield

Factory Default 1

Bit offset

(lsb << x)

Width

(bits)

Description

0 32 Current Baudrate

 BAUDRATE_9600 = 0x00000001

 BAUDRATE_19200 = 0x00000002

 BAUDRATE_38400 = 0x00000004

 BAUDRATE_57600 = 0x00000008

 BAUDRATE_115200 = 0x00000010

 BAUDRATE_230400 = 0x00000020

 BAUDRATE_460800 = 0x00000040

 BAUDRATE_921600 = 0x00000080

A single bit may be set according to the current baudrate setting. 0 is an

invalid value.
Table 38 – Register – Serial – Current Baudrate

In case the Heartbeat timeout of a serial device expires, the device must fall back to factory default

communication parameters (baud rate) in order to allow further communication with the host.

Version 1.3.1 GenCP Standard

 07 January 2025 Page 75 of 75

1.9. Heartbeat

In case a serial device supports multiple baud rates, the Heartbeat mechanism must be supported in

order to ensure a fall back after a faulty baud rate configuration. In case the device loses the

Heartbeat, the link falls back to the default 9600 baud so that the host can re-establish

communication after a switch to a baud rate that is too high. In case the device only supports the

default baud rate, the Heartbeat mechanism is optional.

